ANALISIS REGRESI BAYES LINEAR SEDERHANA DENGAN PRIOR NONINFORMATIF

  • ANAK AGUNG ISTRI AGUNG CANDRA ISWARI Faculty of Mathematics and Natural Sciences, Udayana University
  • I WAYAN SUMARJAYA Faculty of Mathematics and Natural Sciences, Udayana University
  • I GUSTI AYU MADE SRINADI Faculty of Mathematics and Natural Sciences, Udayana University
##plugins.pubIds.doi.readerDisplayName## https://doi.org/10.24843/MTK.2014.v03.i02.p064

Abstrak

The aim of this study is to apply Bayesian simple linear regression using noninformative prior. The data used in this study is 30 observational data with error generated from normal distribution. The noninformative prior was formed using Jeffreys’ rule. Computation was done using the Gibbs Sampler algorithm with 10.000 iteration. We obtain the following estimates for the parameters, with 95% Bayesian confidence interval (0,775775; 2,626025), with 95% Bayesian confidence interval (2,948; 3,052), and with 95% Bayesian confidence interval (0,375295; 1,114). These values are not very different compared to the actual value of the parameters.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

##submission.authorBiographies##

##submission.authorWithAffiliation##

Jurusan Matematika FMIPA Universitas Udayana, Bukit Jimbaran-Bali

##submission.authorWithAffiliation##

Jurusan Matematika FMIPA Universitas Udayana, Bukit Jimbaran-Bali

##submission.authorWithAffiliation##

Jurusan Matematika FMIPA Universitas Udayana, Bukit Jimbaran-Bali

Diterbitkan
2014-05-31
##submission.howToCite##
ISWARI, ANAK AGUNG ISTRI AGUNG CANDRA; SUMARJAYA, I WAYAN; SRINADI, I GUSTI AYU MADE. ANALISIS REGRESI BAYES LINEAR SEDERHANA DENGAN PRIOR NONINFORMATIF. E-Jurnal Matematika, [S.l.], v. 3, n. 2, p. 38 - 44, may 2014. ISSN 2303-1751. Tersedia pada: <https://ojs.unud.ac.id./index.php/mtk/article/view/9604>. Tanggal Akses: 21 apr. 2025 doi: https://doi.org/10.24843/MTK.2014.v03.i02.p064.
Bagian
Articles

Kata Kunci

Bayesian regression; noninformative prior; Jeffreys’ rule; the Gibbs Sampler algorithm

##plugins.generic.recommendByAuthor.heading##

1 2 3 > >>