Vigor Benih Kedelai (Glycine max L. Merr) Kultivar Argomulyo dan Dega 1 pada Kondisi Cekaman Salinitas
Abstract
Vigor of Soybean Seed (Glycine max L. Merr) Cultivars Argomulyo and Dega 1 under Salinity Stress Condition. One of the impacts of climate change is global warming that causes an increasing saline area. This condition became a constraint in the extensification program for soybeans in Indonesia. Salinity at a certain level can inhibit in each stage the growth and development of soybean plants, including the germination stage. Therefore, it is necessary to reveal seed vigor traits of new improved cultivars that have the potential such as high yield and early harvesting under salinity conditions. In this study Dega 1cv. as known early harvesting cultivar was used with Argomulyo as control. This research was carried out from January to March 2024 at the Seed Technology Laboratory, Faculty of Agriculture, Universitas Padjadjaran used two cultivars that were replicated four times and triplet for each unit. The F test at a 5% significance level was used to determine the significance variance between two population cultivars. The Duncan test was used, if there was significance between two populations at a significance level of 5% and t-student test was used to compare between control and saline condition in germination percentage, speed rate of germination, length of root and salinity index. The results showed that genetics may contribute to tolerance on salinity stress as shown in germination percentage, speed rate of germination, length of root and salinity index which showed there were no significant differences between two cultivars in control condition. While the significant difference between two cultivars was in salinity stress condition at 4 dS/m level. Furthermore, Argomulyo and Dega 1 cvs. were classified as tolerance cultivars according to the susceptibility stress index that have values 0.2 and 0.4 respectively.
Downloads
References
Ahmed E, A.M.B. Salih, & A. Reem. 2016. Alleviated effect of salinity stress by exogenous application of ascorbic acid on the antioxidant catalase enzymes and inorganic mineral nutrient elements contents on tomato plant. Int J Life Sci. 4: 467–490.
Alia, K.V., S.K. Prasad, & P. Pardha-Saradhi. 1995. Effect of Zinc on Free Radicals and Proline in Brassica and Cajanus. Phytochemistry. 39: 45–47.
Amartani, K. 2019. Respon perkecambahan benih jagung (Zea mays L) pada kondisi cekaman garam. Agrosainstek; Jurnal Ilmu dan Teknologi Pertanian, 3(1): 9–14.
Amin, A., B.R. Juanda, & M. Zaini. 2017. Pengaruh konsentrasi dan lama perendaman dalam zpt auksin terhadap viabilitas benih semangka (Citrullus lanatus) Kadaluarsa. Jurnal Penelitian Agro Samudra. 4(1): 45–57.
Anugrahtama, P.C., Supriyanta, & Taryono. 2020. Pembentukan bintil akar dan ketahanan beberapa aksesi kacang hijau (Vigna radiata L.) pada kondisi salin. Agrinova: Journal of Agriculuture Innovation. 3(1), 1–5.
Ashraf, M. & P.J.C. Harris. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Science. 166: 3 – 16.
Balai Penelitian Tanaman Kacang-kacangan dan Umbi-umbian [Balitkabi]. 2008. Deskripsi Kultivar Unggul Kacang-kacangan dan Umbi-umbian. Balai Penelitian Tanaman Kacang-kacangan dan Umbi-umbian, Malang. 171 p.
Basal, O., A. Szabó, & S. Veres. 2020. PEG-induced drought stress effects on soybean germination parameters. Journal of Plant Nutrition. 43: 1768 – 1779.
Clermont-Dauphin C.N., O. Grüberger, C. Hammecher, & J.L. Maeght. 2010. Yield of rice under water and soil salinity risks in farmers’ fields in northeast Thailand. Field Crops Research. 118: 289 – 296.
Dianawati, M.E.K.S.Y., D.P. Handayani, Y.R. Matana, & S.M. Belo. 2013. Pengaruh cekaman salinitas terhadap viabilitas dan vigor benih dua varietas kedelai (Glycine max L.). Agrotop. 3: 35 – 41.
Food And Agriculture Organization [FAO]. 2023. FAOSTAT: Countries by Commodity. URL https://www.fao.org/worldfoodsituation/csdb/en/
Farhangi-Abriz, S. & S. Torabian. 2017. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicol. Environ. Saf. 137: 64 – 70.
Fischer, R. A., & R. Maurer. 1978. Drought resistance in spring wheat cultivars. grain yield responses. Australian Journal of Agricultural Research. 29: 897 – 912.
Guo, Q., L. Liu, & B.J. Barkla. 2019. Membrane lipid remodeling in response to salinity. International Journal of Molecular Sciences, 20: 42 – 64.
Haerani, N., B. Sofyan, R.W. Giono, A. Herwati, & H. Haerul. 2023. Uji efektivitas halopriming nacl terhadap perbaikan viabilitas benih dan toleransi kacang hijau pada cekaman salinitas. Agrovital: Jurnal Ilmu Pertanian, 7:112 – 116.
Hariyati, H. 2022. Pengaruh cekaman salinitas dan invigorasi ekstrak kulit buah rambutan (Nephelium lappaceum L.) terhadap pertumbuhan vegetatif kedelai (Glycine max L. Merr). Skripsi. Fakultas Pertanian. Universitas Siliwangi.
Kadapi, M., R.A. Pratomo, & T. Nurmala. 2023. Kualitas fisiologis benih hanjeli (coix lacryma-jobi l.) pada beberapa taraf cekaman salinitas. Jurnal Agrium, 20: 313 – 319.
Karolinoerita, V., & W. Annisa. 2020. Salinisasi lahan dan permasalahannya di indonesia. Jurnal Sumberdaya Lahan. 14: 91 – 99.
Kesmayanti, N. & E. Romza. 2022. Indikator analisis toleransi dan uji toleransi varietas padi terhadap cekaman NaCl. Agrologia. 13: 81 – 88.
Khan P.S.S.V, & P.O. Basha. 2015. Salt Stress and Leguminous Crops. pp. 21 – 51 In Legumes under Environmental Stress. John Wiley & Sons, Ltd..
Kristiono, A., R.D. Purwaningrahayu, & A. Taufiq. 2013. Respons tanaman kedelai, kacang tanah, dan kacang hijau terhadap cekaman salinitas. Buletin Palawija. 26: 45 – 54.
Ma’ruf, A. 2016. Respon beberapa kultivar tanaman pangan terhadap salinitas. Jurnal Penelitian Pertanian Bernas, 12: 11-19
Malihah, L. 2022. Tantangan dalam upaya mengatasi dampak perubahan iklim dan mendukung pembangunan ekonomi berkelanjutan: Sebuah tinjauan. Jurnal Kebijakan Pembangunan. 17: 219 – 232.
Masganti, M., A.M. Abduh, M. Alwi, M. Noor, & R. Agustina. 2022. Pengelolaan lahan dan tanaman padi di lahan salin. Jurnal Sumberdaya Lahan. 16: 83 – 95.
Mulyani, L., L. Khairani, & I. Susilawati. 2020. Pengaruh penambahan giberelin terhadap pertumbuhan dan persentase batang dan akar tanaman jagung dengan sistem hidroponik. Jurnal Sumber Daya Hewan. 1: 6 – 8.
Munns, R. 2002. Comparative physiology of salt and water stress. Plant, Cell and Environment. 25: 239 – 250.
Mustakim, M., S. Samudin, E. Adelina, A. Ete, & Y. Yusran. 2020. Uji ketahanan salinitas beberapa kultivar padi gogo dengan menggunakan berbagai konsentrasi NaCl pada fase perkecambahan. Agrotekbis: Jurnal Ilmu Pertanian. 8: 160 – 166.
Ouhibi, C., H. Attia, F. Rebah, N. Msilini, M. Chebbi, J. Aarrouf, & M. Lachaal. 2014. Salt stress mitigation by seed priming with UV-C in lettuce plants; growth, antioxidant activity and phenolic compounds. Plant Physiology and Biochemistry. 83: 126 – 133.
Pessarakli, M. 2019. Handbook of Plant and Crop Stress. CRc Press.
Phogat, V., S. Satyawan, S. Kumar, S.K. Sharma, A.K. Kapoor, & M.S. Kuhad. 2014. Performance of upland cotton (Gossypium hirsutum) and wheat (Triticum aestivum) genotypes under different salinity conditions. Indian Journal of Agricultural Sciences. 71: 303 – 305.
Purwaningrahayu, R. D. & A. Taufiq. 2017. Respon morfologi empat genotip kedelai terhadap cekaman salinitas. Jurnal Biologi Indonesia, 13: 175 – 188.
Purwaningrahayu, R.D. 2016. Karakter morfofisiologi dan agronomi kedelai toleran salinitas. Iptek Tanaman Pangan, 11: 35 – 48.
Ritung, S., K. Nugroho, A. Mulyani, & E. Suryani. 2011. Petunjuk Teknis Evaluasi Lahan Untuk Komoditas Pertanian. Badan Penelitian dan Pengembangan Pertanian.
Ruliyansyah, A. 2011. Peningkatan performansi benih kacangan dengan perlakuan invigorasi. perkebunan dan lahan tropika. J. Tek. Perkebunan & PSDL. 1: 13–18
Sativa, N., J. Mutakin, & A.Y. Rismayanti. 2023. Uji cekaman salinitas terhadap viabilitas dan vigor benih beberapa kultivar kedelai (Glycine max (L). Merril). Jagros; Jurnal Agroteknologi dan Sains (Journal of Agrotechnology Science). 7: 39 – 50.
Shu, K., Y. Qi, F. Chen, Y. Meng, X. Luo, H. Shuai, & W. Yang. 2017. Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis. Frontiers in Plant Science, 8, 1372.
Solomon, A., S. Beer, Y. Waisel, G.P. Jones, & L.G. Paleg. 1994. Effects of NaCl on the carboxylating activity of rubisco from tamarix jordanis in the presence and absence of proline‐related compatible solutes. Physiologia Plantarum. 90: 198 – 204.
Subantoro, R. (2014). studi pengujian deteriorasi (kemunduran) pada benih kedelai. Mediagro. 10: 23 – 30.
Suryaman, M., I. Hodiyah, & N. Inten. 2020. Potensi ekstrak kulit buah naga untuk mitigasi cekaman salinitas pada perkecambahan benih kedelai. Agrotechnology Research Journal. 4: 106 – 110.
Suryaman, M., Y. Yulianto, & R. A. Amanah. 2023. Potensi ekstrak biji alpukat untuk priming benih kedelai hitam pada fase perkecambahan dalam kondisi cekaman salinitas. Media Pertanian, 8: 97 – 110.
Sutopo, L. (2010). Teknologi Benih. PT Raja Grafindo Persada. Jakarta
Tan, K. H. (1998). Dasar-Dasar Kimia Tanah. Gadjah Mada University Press. Jogjakarta.
Van Rensburg, L., G.H.J. Kruger, And H. Kruger. 1993. Proline accumulation as drought-tolerance selection criterion: its relationship to membrane integrity and chloroplast ultrastructure in Nicotiana tabacum L. Journal of Plant Physiology 141: 188 – 194.
Wahyuni, S., U. Trisnaningsih, & M. Prasetyo. 2018. Pertumbuhan dan hasil sembilan kultivar kedelai (Glycine max (L.) Merr.) di lahan sawah. Agrosintesa Jurnal Ilmu Budidaya Pertanian. 1: 96 –102.
Zhu, J.K. 2016. Abiotic Stress Signaling and Responses in Plants. Cell. 167: 313 – 324.