PENERAPAN METODE GENERALIZED RIDGE REGRESSION DALAM MENGATASI MASALAH MULTIKOLINEARITAS

  • NI KETUT TRI UTAMI Universitas Udayana
  • I KOMANG GDE SUKARSA Universitas Udayana
##plugins.pubIds.doi.readerDisplayName## https://doi.org/10.24843/MTK.2013.v02.i01.p029

Abstrak

Ordinary least square is parameter estimation method for linier regression analysis by minimizing residual sum of square. In the presence of multicollinearity, estimators which are unbiased and have a minimum variance can not be generated. Multicollinearity refers to a situation where regressor variables are highly correlated. Generalized Ridge Regression is an alternative method to deal with multicollinearity problem. In Generalized Ridge Regression, different biasing parameters for each regressor variables were added to the least square equation after transform the data to the space of orthogonal regressors. The analysis showed that Generalized Ridge Regression was satisfactory to overcome multicollinearity.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

##submission.authorBiographies##

##submission.authorWithAffiliation##
Jurusan Matematika, Fakultas MIPA
##submission.authorWithAffiliation##
Jurusan Matematika, Fakultas MIPA
Diterbitkan
2013-01-30
##submission.howToCite##
UTAMI, NI KETUT TRI; SUKARSA, I KOMANG GDE. PENERAPAN METODE GENERALIZED RIDGE REGRESSION DALAM MENGATASI MASALAH MULTIKOLINEARITAS. E-Jurnal Matematika, [S.l.], v. 2, n. 1, p. 54-59, jan. 2013. ISSN 2303-1751. Tersedia pada: <https://ojs.unud.ac.id./index.php/mtk/article/view/4924>. Tanggal Akses: 22 apr. 2025 doi: https://doi.org/10.24843/MTK.2013.v02.i01.p029.

Kata Kunci

Linear regression; parameter estimation; multicollinearity; Generalized Ridge Regression

##plugins.generic.recommendByAuthor.heading##

1 2 > >>