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ABSTRACT

This article investigates the existence and unique solution of a fractional Volterra boundary value
problem of the first sort with Hadamard type and three-point boundary conditions. Our analysis is
based on the fixed-point theorem of Krasnoselskii-Zabreiko and the Banach contraction principle. We
explored the solution of a Hadamard type boundary value issue with fractional integral boundary
conditions, and our conclusions are well demonstrated with examples.
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1. INTRODUCTION

The theory of fractional differential
equations and inclusions has received a lot of
attention in recent years. It has become an
important academic issue because to its
numerous applications in the fields of physics,
economics, and engineering sciences. Fractional
differential equations and inclusions provide
appropriate models for addressing real-world
situations that cannot be addressed using
classical integer-order differential equations
(Benchohra et al., 2009; Ahmad et al., 2021;
Bai, 2010; Balachandran & Trujillo, 2010;
Agarwal et al., 2010; Ahmad, 2010).

Fractional calculus is a branch of
mathematics concerned with the study and
application of arbitrary order integrals and
derivatives. Fractional differential equations are
derived from the mathematical modelling of
systems and operations encountered in a wide
variety of engineering and scientific disciplines,
including physics, chemistry, aerodynamics,
electrodynamics of complex media, polymer
rheology, economics, control theory, signal and
image processing, biophysics, and blood flow
phenomena, among others (Ishak, 2020; Kilbas
& Trujillo, 2003; Guotao et al., 2018; Ahmad et
al., 2021; Sial et al., 2021; Ntouyas et al., 2021;
Jhanthanam et al, 2019).
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The majority of study on this issue has long
been recognized to be based on Riemann-
Liouville and Caputo-type fractional differential
equations. Another type of fractional derivative
that appears in the literature alongside Riemann-
Liouville and Caputo derivatives is the
Hadamard fractional derivative introduced in
1892 (Chen et al., 2013), which is distinguished
from the preceding ones by the presence of a
logarithmic function of any exponent in the
kernel of the integral. Details and properties of
Hadamard fractional derivative and integral can
be found in Ahmad et al. (2021); Samadi &
Ntouyas (2021); Kiataramkul et al. (2021);
Benkerrouche et al. (2021).

This study investigated the existence and
uniqueness of the following boundary value
problem for the Volterra fractional differential
equation of the Hadamard type.

#D%x(t) = f_too K(t,s)¢(s,x(s))ds
,JtE[LW], 1<a<2 weR

x(1)=0, x(w)=px(n), 1<n<w (1)

Where ;D% is the Hadamard derivative of order
a, p:;[L,w]x R —R is a continuous function
and g is a real number.
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2. PRELIMINARIES

Definition 2.1. (Ahmad et al., 2017) The
Hadamard derivative of fractional order q for a
function g: [1, o) — R, is defined as:

gDlg(t) = p(%_q)(t %>" J-lt (logg)n_q_l @ds

, n—1<qg<n

provided the integral exists, where [q] denotes
the integer part of the real number g

and log(.) = log,. (.).

Definition 2.2. (Ahmad et al., 2017) The
Hadamard fractional integral of order ¢ € R* of
a function g € LP[a,b],0<a<t<b <o is
defined as

qg()—r()f

Definition 2.3. (Ahmad et al., 2017)

let 0<a<b< b= t% and AC¢[a,b] =
{f:[a,b] » R: 8™ 1[f(¢t) € [a,b]}.The
Hadamard derivative of fraction order q for a
function f € ACg'[a, blis defined as

q1
g() g0

Dif(e) =8m(U"")(0) =
n .t n-q-1
HI“(nl— q) (t%> L (l o4 ) f(S)

Where n-1< ¢ <n, n=[q]+1, [q] denotes the
integer part of the real number q and log(.) =

log, (.).

Lemma 1. (Ahmad et al., 2017)
Let g > 0 and x € C(1,0)NL(1,0).
Then the solution of Hadamard fractional
differential equation D9x(t) =0 is given
by

n

x(t) = Z c;(log )t

i=1

And the following formula holds:
n

alyDIx(t) = x(t) + Z c;(log )77
where ¢; € R,i = 1,2,...,_n and n—1<qg<
n.

Rewrite problem (1) as a fixed-point
problem:
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gDx(t) =o(t) ,te[l,w], 1<a<2 weR

x(1) =0, x(w)=px(m), ne€[lw]

()
Where a(t) = [*_K(t,s)¢(s, x(s))ds

Lemma 2: For 1<a<2 and o(t) €
C([1,w], R) the boundary value problem (2) is
equivalent to the integral equation:

A1 5(s)
x(t) = r( 5 (log;) Tds+

(logt)*™* B N ta 5
(logw)@ 1 (logn)®~1 |T(a) X (logs) 5 ds

1 w w\e1 a(s)
mfl (lOg:) Tds] (3)

Proof: In view of lemma (1) the fractional
differential equation (2) is equivalent to the
integral equation:

t
“ a(s)
x(t) = log
rl (

+ ¢, (log t)“ 1
+c(log t)*2 (4)

Using the given boundary conditions, we find
that c, = 0, and

(S

1 B (1og M\ T IS g
(logw)a1—B(logn)aT [r(a)fl (log?)” =2 ds

1w w\% "1 g(s)
i (log¥) Tds]

Substituting the values of c; and c, in (4), we
obtain (3). This completes the proof.

Now we recall the Krasnol’sk’ii-Zabreiko’s
fixed point theorem.

Theorem 1. (Ahmad et al., 2017)
Let (E, ||.|])be a Banach space, and T: E —— E
be a completely continuous operator. Assume
that A: E —E is a bounded linear operator such
that 1 is not an eigenvalue of A and

ITu — Aul|
llull
Then T has a fixed point in E.

llul|—co
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Using Lemma 2, the solution of the problem (1)
can be written as:

O
w07 (10g2) T LU K6 ), x()) dsyds +
(logt)*~*

(logw)*~* — B(logn)**

[ 17 (10g2)™ 27, K, 5)p (s, x(2) ds)es

L (10g2) (M K, )¢5, x() ds)ds] )

I'(a) s

3. MAIN RESULT

Consider the Banach space X = C([1,w], R)
with the norm [|x|| = supiepr,wlx ()|

Theorem 2: Let ¢ be a continuous function,
satisfying |K(t,s)] <
Se~*t=9) for some 5,1 € R, ¢(a,0) = 0 for
some a € [1,w]

and
t,x(t
lim (,b(—()) = -Q(t): -Qmax
|x|—>00 X 1
= maxee,w) Q)| < A
With
A= 5(10gW)“( B(logn)“(logw)_l—(logW)“_l)
AT (a+1) (logw)@~1—-B(logn)@-1

Then the BVP (1) has at least one nontrivial
solution in [1,w].

Proof: define an operator ¥: X — X by

t
t a1 4(s)

1
Wx(t) = —— (z ) Tds
X0 = 75 | (tog?) ¥
1
(log*~* n c(s)
(logw)*~1—B(logn)*~* [F(a) 1 ( ) ds
1 w (s)
mfl (log?) TdS] , te [1,W]

basing on this the mapping ¥ is well defined,
now we have to proof that there exist a fixed
points for the operator W in the Banach space X.
We split the proof into three steps.

Step 1. To prove that W is continuous let us
consider a sequence {x,} converging to x, for
each t € [1,w] we have:
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I‘Pxn(t)

<t f (1og5) < f 1K, )| (5,5 (5))

— ¢(s, x(s))| ds)ds +
(logt)*~*
(logw)*~* — B(logn)*~*

[ 17 (1082) 27, KG9 (5,50(5)) -
#(s,x(s))| ds)ds —
%flw (logg)(l—1 % (f_woo K(W, S)|¢(S, xn(S)) _

d(s,x(s)) | ds) ds]

lpX(t)l

1
lds+
S

%ff(log ) 1%ds—

8o (tan®)-tx®))| (t A%
S Al'(@) fl (log s)

8log ) |p(txn () -pEtx(®)]|
A((logw)@~1-B(logm)*~1)

1w w\% 11
@fl (log?) ;dS]

_ SQogw)* lo(t, 2. (0) — D(t, x(2)) ||
AL(a+1)
+ 5B (log )**(logn)*||p(¢, x,,(£)) — P (¢, x ()|
A((logw)*~t — B(logn)* )l (a + 1)

8(logt)*~* (logw)*[|p(t, x, (1)) — P (£, x(®O) ||
A((logw)*~t — B(logm)*HI'(a + 1)

5(logW)“ll¢(t x, (1) — D¢, x(t))ll
A(a+1)
B(logn)*(logw)™" — (logW)“‘l]
(logw)*~1 — B(logn)*~*

< All(6 %0 (®)) — B (6, x ()|

Since the convergence of a sequence implies its
boundedness therefore there exists a number
M > 0 such that:

Ixall <M, x|l =M

and hence ¢ is uniformly continuous on the
compact set {(t,x),t € [1,w], ||x|| < M}, thus
|Wx,(t) — Px(t)| < €,Vn =n, this shows
that ¥ is continuous.

For any R > 0, we consider the closed set C =
{x € X:||x|| <R}
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Step2: we prove that W(C) is relatively compact
in X we set:

b (t, %)

= max
Pmax te[1wllixll<R

Then we have:

< f (zogg)a_1§<_f K (¢, )16 (s, x())| ds)ds

(logt)**
glli)lgwyl‘1 — B(logn)**
L[ (10g2) LU IKGL )Nl (s, x(5)] ds)ds —

ﬁflw(wgg)a (f |K(w, )|l (s, x(s))|ds)ds]

SPmax(logw)?®
AT(a+1) +
(logt)** [ﬁ5¢max(10gn)“ _
(logw)@=1-B(logn)a—1 AT (a+1)
SPmax(logw)?®
Al(a+1)

S Pmax(logw)“
- Al(a+1) [1 +
B(logn)*(logw) ' —(logw)* "

o ot < Ama

Thus ||Wx]|| < A¢q, and consequently W(C)
is uniformly bounded. For t,,t, €
[1,w] with t; < t, we have

[Wx (t;) — Wx(ty)| <

s (os2) las-

ffz (log %2) - ds‘ +

a-1

B8 Ppmax[(logtz)* 1—(logt)* 1] n(log—) B
AT(a)((logw)®—1—B(logn)*~1) |“1

a-1
log?
(Ogs) dS _

s

-1

S6maxl(0gta) ' ~(logt)*1] | (ogg)
AT (@) ((logw)*~1—B(logn)*~1) |1 s

G

N

S

5¢max[(10gt2)a '—(logt)* 1]
Al'(a+1)

As the right-hand side tendsto 0 as t; — t,,
this guarantees that W(C) is equicontinuous by
Arzela-Ascoli  theorem the mapping Wis

73

Existence and Uniqueness Solution for Three-Point Hadamard-Type Fractional VVolterra BVP

completely continuous on X. This completes the
proof of Step 2.

Next consider the following boundary value
problem

gD%x(t) = 06(t) ,t €
wER

x(1) =0, x(w) =px(m) , n€
(1, w]

[Lw], 1<a<?2,

(6)

Where 6(t) = [*_K(t,5)Q(t)x(t)ds .Let us
define an operator A: X — X by

Ax(t) =
% lt (logi)a_1 i (f_too K(t,s)Q(s)x(s) ds)ds +
(logt)*~*

(logw)*~t — B(logn)*~*

a-14
[ 17 (10g2) " 217, K s)x(s) ds)ds
% flw (log%)a_1 % " Kw,$)Q(s)x(s) ds)ds|,

te[1,w]

Clearly, A is a bounded linear operator, in
addition any fixed point of A is a solution of the
boundary value problem (6) and vice versa.

Step 3. We now make sure that 1 is not an
eigenvalue of A. Suppose that the boundary
value problem (6) has a nontrivial solution x(t),
then:

llxll = 1ACOI = suprepswlAx(B)] <

L[ (10gt) LS IK(E IS Ix() ds)ds +
F(a) s W—o0 ’

(logt)*~*
(logw)*~1-B(logm*~*

[ 17 (10g2)2

~(J7 1K@, 119)1x(s)] ds)ds —
rah (log%)

LU K N1 ds)ds

6 (logt)“
< Qarllxll [m D
5P (logt)** (logn)®
Al (a + 1) ((logw)®~* — B(logn)*1)
S(logt)* 1(logw)®
~ A0(a + 1)((logw)®~* — B(logn)*~1)
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é(1 @ a-1
< Daxllxll Jrom [ 1 + 17 (10g2)" 17 1k, | (5,x()) —
B(logw)~* (logn) %~ (logw)*~* - (ogt)*”?
(logw)@~1—B(logm=—* | < Qmarlxll < U)x(s)] dsds — s e o
a-1
x| 1 (10g) 1Y 1K, $)l|b(s x()) -
So, because of this contradiction the BVP (6) has AUs)x(s)| ds )ds]
no nontrivial solution. Thus 1 is not an
eigenvalue of A. Sellxll(logt)®
Al'(a+1)
Finally, we prove that: 8pellxlI(logn)*(logt) ¥~ * —ellx||(logw)* (logt) ¥~ *
Al (a+1)((logw)*~1-B(logn)*~1)
|Wx — Ax||
Wow Il aeuxn(logt)“[ +
Al'(a+1)
)  p(tx(®) Blogn)*(logw)~* —(logW)“‘l]
According to the |£|l£l —= = 0(t), for logm ™ 1—gaogni1 | < eAl|x||

any € > 0 there exist some & > 0 such that: . . o
Which on taking the limit yields

|¢(t,x(t)) - Q(t)x| <e€lx|, for|x|>¢&

[[Wx — Ax]|
im ————— =
set lxlimeo ||
* = max {max ¢(t, x(t
d telL, w]{|x|< (LX)} Consequently,Krasnol’sk’ii-Zabreiko’s theorem
And select A > 0 such that: guarantees that the boundary value problem (1)
§" + Qpaxé < €A has at last one nontrivial solution, whereas
We denote Y: X — X is completely continuous operator and
L={e[Lwlx(®)]<&}, L={t A:X - X is bounded linear operator such that
€ [Lwlx(©O] > & 1 is not eigenvalue of 4 and: ” l}lm % =
X||—>00
For any x € X with ||x|| > A, t € I; we have: 0

|¢(t,x(t)) — _Q(t)x| Th(?[grem f3: t_let qlt) [1,_w] >t<h]R ? I]}% _be
< |6 (£, x(D)] + Ll continuous function satisfying the following

condition:
There exists a constant L > 0 such that

S8 Qnaxd < eh < el 16(6,x(0) — B (6, (O] < Llx — y]

For any x € X with ||x|| > A, t € I, we have Foreach t € [1,w]and x,y € R, if
LA< 1 @)
|¢(t,x(t)) _ Q(t)x| < e|lx|| Then the Hadamard fractional BVP (1) has a

unique solution on [1, w].

Then f € X with A we h .
entorany x with [lx[| > A we have Proof: fixing thfx]¢(t,o)=p<oo , we
W

|p(t, x(0) — Qx| < ellx|| define B, = {x € X:||x|| < r} Where r > %
Then we obtain: ,we show that the set B, is invariant with respect
to the operator ¥ that is ¥B, < B,,forx € B
|Wx — Ax|| = SuPte[l,w]Kq”x — Ax)(t)| we have: " " "
< SUPte[1,w]
1t AT
[@fl (log;) ;(f_OOIK(t, | (s, x(s)) — [Wx (O < o e
0(5)x(9)] ds) s + ot B s maxeeq [ i (1085) 3 UL 1K@ 9I(6(s,x(5)) -
¢(s,0)| + 1 (s, 0)ds)ds +
B(logt)*™*

I'(@)((logw)*~1-B(logm*~1)
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17 (10g) " L IK G| (5. x(5)) -
#(s,0)| +

(logt)®~1
IbCs, 0)DS)ds ~ o e paogmas
1 (10g%) 22 1w, 9)I(| (s x(5) —
#(5,0)| + |85, 0D ds)ds|

< S(Lr+p)(logw)@
- AT (a+1)

SB(Lr+p)(logw)* T (logm®
AT (a+1)((logw)*~1-B(logn)*~1)

5(Lr+p)(logw)* * (logw)®
Al(a+1)((logw)*~1-B(logn)*~1)

S(Lr+p)(logw)“
= Al (a+1) [1 +
Blogw) " (logn)*~(logw)* "
(logw)*~1—p(logn)*~*

]S(Lr+p)ASr

Which shows that ¥B, c B, .
Now let x, y € X then for t € [1, w] we have:
IPx(t) — Py @Ol <
a-1
o ki (10gf) (LK@ 9I|9(s,x(s) -

S
(logt)*~1

#(s, ()| ds) ds + (logw)*~ 1B (logn) ™1
[ 17 (1082) ™ 2 1K )15 1))
$(s,y(s))| ds)ds
1w w\* 11w
o b (0g%) S IK w9l 6(sx(s) -

N

#(s, ()| ds]

< SL{ogw)“llx — ¥l
Al'(a+1)
SL(logw)**|lx — yll(B(logm)* — (logw)®)
Al'(a + 1)((logw)*~* — B(logn)*~*)

< S(logw)*

= AT(a+1)

(logw)~*B(logn)*—(logw)*~*
(logw)*~1—B(logn)*~1

AL||lx =yl

| Lilx =yl <

It follows from the assumption (7) that W is a
contraction. In consequence by Banach’s fixed
point theorem the operator W has a fixed point
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which corresponds to the unique solution of
problem (1). This completes the proof.

4. APPLICATION

The method presented in previous section is
applicable to a variety of boundary value
problems, and we can apply it on the following
Hadamard type boundary value problem with
fractional integral boundary conditions given

by:

t

gD%x(t) = fK(t, s)(;b(s,x(s))ds ,1

<t<w, 1<a<?
1<weRt
x(1) =0, x(w)=

Bx(m), 1<n<w )

where yD® is the Hadamard fractional
derivative of order a, I? is the Hadamard
fractional integral  of  order B and
o(t,x(®)):[Lw]x R-> R is a continuous
function.

Lemma 3: For 1<a<2 and o(t)€
C([1, w], R) the unique solution of the BVP (8)
is equivalent to the integral equation:

Lt lo_gf)“‘lﬂ
X(t) T T(@) 1( s s ds +

] S TN RV O\ 1w w\®
(logt)® [r(p+a)f1 (logd )" s /1" (log 5) 55

B-1 a-1
(og Ss) ds

(logw)®~ 155 [}/ (l0g't)
Where o(t) = f_too K(t,s)p(s,x(s)) ds .

Proof: In view of lemma (2) the fractional
differential equation (8) is equivalent to the
integral equation:

1 gt t\* L o(s)
X(t) —m 1(10g;) TdS+

c;(log)* 1 + c,(log t)*~2 (10)
Using the given boundary conditions, we find
that ¢, = 0, and

1Btas(m)—1%e(w)

—1__1 (NoetP 10og* !
(logw)@~1—;7 [/ (log]) s

(e
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Substituting the values of ¢; and c, in (10) we 5. EXAMPLES

abtain (3). This completes the proof. Example 1: Consider the boundary value

. . roblem
Theorem 4: Let ¢ be a continuous function, P
satisfying |G (¢, s)| < 1.25 t 12t
8,6 119 for some 5,14, € R, ¢(a,0) # 0 D™x(0) = f—oo € ((sint + Dx(t) +
for some a € [1,w]
and 1)ds ,t €[1,2]
ot x())
|;H£>noo— = (1), OQmax x(1) =0, x(2)=
1
= maxeewile(®)| < A 1.5x(1.5) , n € [1,w] (11)
With
_ 5(logw)®~1 Herea =1.25,8 =15, =1.5,w = 2,and
17 r(a+1) K(t,s) = el 2t < e72(t=2) ywhere § = 1,4 =
Blogm)®tBlogw)@~1  slogw)2¥~1 = (si
ggr(awj) ‘ )ﬁ(oﬁl) j),(i(él)xg)l) ~ O(Z;T(l:it + Dx(®) + 1 where
(log w)a~ 1~ (log n)@+A~1 ’
. o ex(@®)
Then BVP (8) has at least one nontrivial |a£|1£>nooT =sint+1=Q(t) > Qg
Proof: define an operator $: X — X by: _ 5(logw)®
T A(a+1) ( +
_ 1 (t(logt)* "ol Bogm)®(logw)~*—(logw)*~ 1Y _
$x(0) = i [y () as + i —) = 0.6255956

a1 1 n n ﬁ+a—1® 1w Ea—lﬁ
log? [me)fl (ogg )" =g i (logS) 25 ‘“] Then Qg A ~ 0.398149 < 1, and hence by
(logw)*~1 7= fln(logn?)ﬁ ”Mas Theorem (2) the bOL_mdary value problem (11)
has at least one solution.

e L w] On the other hand since |¢(¢, x(t)) —

. . - ot y(@)| = |x(t)sint + x(t) — y(t)sint +
We omit the further details as the remaining y(®)| < |x — yl|sint + 1] < L|x — y|, where
propf runs parallel to that of Theorem (2) with L > sint +1 = 1.03,¢ € [1,2],and LA < 1
Ay inplace of A. then by theorem (3) the BVP (11) has a unique

solution on [1, 2].
Theorem 5: let ¢: [1,w] X R - R be

continuous function satisfying the following Example 2: consider the boundary value
condition:

! problem
There exists a constant L, > 0 such that t

DY Zx(t) = J- el=2((sint + Dx(t) + 1)ds,

—00

lo(t, x(1)) — @(t, y()] < Lyx — yl
Foreach t € [1,w]and x,y € R, if

LA <1 t €[1,2]
Then the Hadamard fractional BVP (8) has a s
unique solution on [1, w]. x(1) = 0,x(2) = I">x(1.5) ,
n€llLw] (12)
The details of the proof have been omitted
because they are parallel to what is found in Here « =1.25,4=15,n=15,w=2,and
Theorem (3) G(t,s) = e'™2t < ¢72(t=2) where §; =

1,4 =2, o(t,x(t)) = (sint + Dx(t) + 1
where ¢(a,0) = 1 # 0 and
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t,x(t
im (p(—()) =sint+1=00) > Omax
|x|—00 X
= 0.636432
__ 8(logw)* !
A = AT(a+1)
BAogm*Bogw)*1 51ogw)2~1
ATl (a+p+1) Al (a+1) _
) 0 = 0.41348649
(logw) Tarpy108™

Then AQmax = 0.263156 < 1 , and hence by
Theorem (4) the boundary value problem (12)
has at least one solution.

On the other hand since  |p(t,x(®))—
w(ay(ﬂ)|=|x(ﬂshn-+x(ﬂ-—y(ﬂshn-+
y(@®)| < |x —yllsint + 1| < L{|x — y|, where
L; =sint+1=1.03,te[1,2],and LA<1
then by theorem (5) the BVP (12) has a unique
solution on [1, 2].

6. CONCLUSION

In this research paper we have proven the
existence and uniqueness of solutions for the
Hadamard type Volterra fractional
integrodifferential equation with three-point
boundary value conditions by selecting 1 < a <
2 and optional interval [1,w]. Boundary value
conditions have been chosen to contain three
different point for which have never been used
together with Volterra equation before in any
article as far as we know. Existence of solutions
have been shown by Krasnol’sk’ii-Zabreiko’s
fixed point theorem, and uniqueness solutions
have been investigated by Banach contraction
principal theorem.

The case of fractional integral boundary
conditions was discussed, examples have been
supported in order to demonstrate all theorems
very well.
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